Migration of Macrophages Carrying Antigen into the Thymus

Macrophages mediate the immune response to certain antigens¹. In connection with studies on subcellular turnover and storage compartments for heat denatured bovine serum albumin (cBSA) within cells from peritoneal exudate (PEC) the question arose whether there is a functional heterogeneity among the phagocytic cells from peritoneal exudates of CBA mice.

This possibility was tested by labelling PEC in short term tissue culture with Cr⁵¹ and feeding them with I¹²⁵ marked cBSA at the same time. The cells were then washed and injected i.p. into normal recipient mice and the ratio of I¹²⁵/Cr⁵¹ was determined in different organs at intervals after injection. Any alteration in the ratio of I¹²⁵/Cr⁵¹ in different organs was thought to indicate cell heterogeneity in terms of I¹²⁵cBSA or Cr⁵¹ uptake and

destination of migration. The validity of this conclusion depends on 3 assumptions. (1) There is no substantial transfer of I¹²⁵cBSA from the phagocytic cells to other cells. It has been shown that macrophages release I¹²⁵ as mono- and di-iodotyrosine and not as BSA². (2) The Cr⁵¹ and I¹²⁵ released from cells after transfer is excreted quickly and not taken up any more by other cells. This point has been studied ³. (3) The ratio of free I¹²⁵ and Cr⁵¹ in the circulation is not different from the ratio of the cellbound label (controlled by TCA precipitation of whole blood, Table II).

The details of the I¹²⁵cBSA and Cr⁵¹ uptake by PEC in tissue culture from 4 different experiments are summarized in Table I. The distribution of radioactivity among several organs of recipient CBA mice after transfer

Table I. Uptake of I125cBSA, I131cBSA and Cr51 by PEC in tissue cultures

	Exp. 1, I ¹²⁵	Exp. 2, I ¹²⁵	Exp. 3, I ¹²⁵	Exp. 4a, I ¹⁸¹	Exp. 4b, I12
PEC/mlb	1 × 10 ⁷	5 × 10 ⁶	1.2×10^{7}	4.5 × 10 ⁶	4 × 10 ⁶
Total volume (ml)e	20	20	20	10	10
mg cBSA/ml ^d	0.6	0.6	4	0.03	0.03
μg uptake/mg cBSA in medium/108 cells	3.75	17	7	15	11
μC Cr ⁵¹ /ml	12.5	12.5	12.5	-	_
Uptake	6×10^{-3}	3×10^{-2}	3.75×10^{-2}	_	-
ug cBSA in PEC transferred into 2 mice	30	40	220	1.25	0.9
No. of cells transferred into 2 mice	7.4×10^{7}	$2 imes 10^7$	4×10^7	2.1×1	.07

 $^{^{}a}$ Cr⁵¹ as sodium chromate BP. Specific activity 300 μ C/ μ g. I¹²⁵ and I¹²¹ from the Radiochemical Centre, Amersham, in high specific activity (50–100 mC/ml). Iodide for protein iodination. Iodination according to 8 . Radioactivity was measured with a Packard autogamma spectrometer under conditions where 10% of the Cr⁵¹ counts went into the I¹²⁵ channel and less than 1% of I¹²⁵ in the Cr⁵¹ channel: the data were corrected for background and overlapping of Cr⁵¹ with I¹²⁵. 19 PEC from CBA mice, injected at day 3 with 3 ml thioglycolate (Difco), at day 0 washed out from the peritoneum with 4 ml tissue culture medium 199 (Glaxo). $^{\circ}$ Tissue culture medium 199, buffered with *Tris* pH 7.2 (0.05 mmol/ml); 4% CO₂ in atmosphere, 37 °C; 1 h incubation; Esco tissue culture dishes. 4 cBSA prepared according to 9 .

Table II. Recovery of I 125 cBSA and Cr 51 activity in different organs from recipients of labelled PEC 4

	90 min		2 h		4 h		9 h	9 h		20 h		4 h	
	I ¹²⁵ /Cr ⁵¹	Ratio	I ¹²⁵ /Cr ⁵¹ (heated co	Ratio									
Blood	1863 1164	1.60	1823 764	2.40	1780 1180	1.51	206 807	0.26	93 461	0.20	845 3829	0.22	
Spleen	744 4269	0.18	459 1063	0.43	1252 4959	0.25	332 2953	0.11	85 3706	0.20	2440 2153	1.14	
Liver	3024 7440	0.41	5550 8640	0.64	2714 6118	0.44	1687 8304	0.20	330 4266	0.08	5867 6827	0.86	
Lymph nodes	-		462 855	0.54	253 675	0.38	38 209	0.18	40 471	0.09	134 327	0.41	
Thymus	1047 162	6.46	890 217	4.10	825 467	1.83	146 481	0.30	13 161	0.08	42 63	0.67	
PEC ^b	3447 57027	0.06	9624 42217	0.23	355° 5185°	0.07	3078 21575	0.14	< 1 6489	< 0.01	15453 13507	1.14	
Supernatants of 5% TCA precipi of blood fraction	tation		486 254	1.92	584 404	1.44	48 181	0.27	15 63	0.24	256 995	0.26	

^a Counts/3 min. Organs of 2 animals pooled. ^b Cells washed before counting. ^c Approx. 75% of cells lost during washing. Data for 90 min and from 2-20 h are 2 different experiments. Input (90 min): 2.3×10^4 cpm of $1^{125}/2$ mice; recovery: 3.4×10^3 cpm of $1^{125} \triangleq 15\%$. 6.2×10^4 cpm of $1^{125}/2$ mice; recovery: 2.3×10^4 cpm of $1^{125}/2$ mice; recovery: 2.3×10^4 cpm of $1^{125}/2$ mice; recovery: 2.3×10^4 cpm of $1^{125}/2$ mice; recovery: 1.8×10^4 cpm of $1^{125}/2$ mice; $1^{125}/2$ mic

of these cells is presented in Tables II and III. In the first 4 h after transfer the ratio of I¹²⁵/Cr⁵¹ is markedly different between the organs. It is highest in the thymus and lowest in the PEC recovered from the recipients; the difference in the I¹²⁵/Cr⁵¹ ratio between thymus and PEC is 18- to 100-fold. The difference between thymus and spleen is 5- to 35-fold. A high ratio is also found in the blood. During the first 2 h after transfer the absolute amount of I¹²⁵cBSA in the thymus is higher than in the spleen; at 4 h and later the opposite result is found.

It is important for the interpretation of the data that the I^{125}/Cr^{51} ratios of the supernatants of 5% TCA precipitation of the whole blood are the same as in the whole blood at any given time and that these supernatants contain only 20-30% of the radioactivity. This shows that there is no excess of one isotope in the circulation. As a further control an aliquot of the cells prepared for transfer was heated for 10 min in boiling water and then

Table III. Recovery of I¹²⁵cBSA and Cr⁵¹ activity in different organs from recipients of labelled PEC^a (an experiment similar to the one presented in Table II)

	4 h I ¹²⁵ /Cr ⁵¹ Ratio		18 h	¹ Ratio	24 h I ¹²⁵ /Cr ⁵¹ Ratio		
		114110	1 /01	rano	1 /01		
Blood (1 ml)	837 430	1.95	44 93	0.47	175 349	0.50	
Spleen	844 885	0.95	29 166	0.18	147 466	0.32	
Liver	1798 1369	1.31	44 405	0.11	663 2100	0.31	
Lymph nodes	97 125	0.78	8 12	0.66	9 63	0.14	
Thymus	395 77	5.12		< 0.01	4 70	0.05	
PEC	824 5294	0.16		< 0.01	238 1563	0.15	

Injected: 2.4×10^4 cpm of I¹²⁵; 4.0×10^4 cpm of Cr⁵¹. Recovered after $4\ h$: 4.8×10^3 cpm of I¹²⁵ $\stackrel{\triangle}{=} 20\%$; 8.2×10^3 cpm of Cr⁵¹ $\stackrel{\triangle}{=} 21\%$. *cpm. Organs of 2 animals pooled. *b Cells washed before counting.

injected into mice (Table II, last column). In this group only 0.17% of the recovered I^{125} activity was found in the thymus after 4 h compared to 4.8–11.5% after injection of living cells. In addition no marked difference in the ratio of I^{125}/Cr^{51} could be found in the organs studied.

After 9 h in the recipient mice the radioactivity becomes equally distributed among the organs and the amounts recovered become low. This is partly due to a loss of cBSA-bound I¹²⁵ by release of I¹²⁵ mono- and diiodotyrosine. On the other hand the rate of loss of Cr⁵¹ from cells is 5%/h. These reasons taken together allow no meaningful calculation of the distribution for the period between 9 and 24 h after injection of the PEC.

The PEC from CBA mice induced with thioglycolate consist of about 80% macrophages as judged by histological criteria. From the amount of I125cBSA carried into the thymus it was already improbable that this was transported unspecifically as a contamination of the lymphocyte population. To disprove this possibility further, PEC were incubated in tissue culture for 2 h; then cells nonadherent and adherent to the polystyrene dishes were separated. The non-adherent population contained lymphocytes and a large amount of macrophages. Adherent and non-adherent cells were then fed in tissue culture either with I125cBSA (adherent) or I131cBSA (nonadherent). Afterwards they were washed, pooled again, and injected i.p. into normal recipients. At intervals the distribution of I125- and I131cBSA in the different organs was tested. It was expected that if the radioactivity found in the thymus was brought in by lymphocytes the ratio of I125/I131 would be lower in the thymus than in the other organs. Table IV shows that there is no significant difference in the I¹²⁵/I¹³¹ ratio between the organs tested. There can be no significant transport by non-phagocytic cells.

B. A. EHRENREICH and Z. A. COHN, J. exp. Med. 126, 941 (1967).
D. R. BAINBRIDGE, L. BRENT and G. GOWLAND, Transplantation 4, 138 (1966). – D. H. CAMPBELL and J. S. GARVEY, Adv. Immun. 3, 261 (1963).

Table IV. Distribution of I125cBSA and I131cBSA from adherent and non-adherent PEC in organs of recipients of pooled PECs

	30 min 1 ¹²⁵	I131	1 h 1125	Irar	3 h I ¹²⁵	Irar	19 h I ¹²⁵	I121
Radioactivity injected into 2 mice at time 0	1.11 × 10 ⁵	3.27×10^{5}	$1.11 imes 10^5$	$3.27 imes 10^5$	1.11×10^{5}	$3.27 imes 10^5$	$1.11 imes 10^5$	3.27 × 10 ³
Radioactivity recovered from organs of 2 mice	6.7×10^4	2.0×10^5	5.0×10^4	1.6×10^5	2.7×10^4	8.6×10^4	$\textbf{4.8}\times 10^{\textbf{3}}$	1.2×10^6
% of injected	60	61	45	49	24	26	4.3	3.7
Ratio I ¹²⁵ /I ¹⁸¹ in								
Blood (0.5 ml)	0.344		0.311		0.325		0.345	
Spleen	0.305		0.364		0.387		0.357	
Liver	0.328		0.310		0.342		0.358	
Thymus	0.340		0.333		0.290		0.324	
PEC	0	375	0.	312	0.	212	0.3	85

Counts/3 min.

¹ P. C. Frei, B. Benacerraf and G. J. Thorbecke, Proc. natn. Acad. Sci., USA 53, 20 (1965). – R. Gallily and M. Feldman, Immunology 12, 197 (1967). – N. A. Mitchison, in Regulation of the Antibody Response (Ed. B. Cinader; C. C. Thomas, Springfield, Ill.), in press. – D. E. Mosier, Science 158, 1573 (1967).

The high ratio of I¹²⁵/Cr⁵¹ in the thymus could mean that a population of phagocytic cells inefficient in uptake of Cr⁵¹ migrates preferentially into the thymus. This possibility seems unlikely since it is known that free Cr⁵¹ after i.p. injection into mice distributes equally into different organs⁴. Alternative explanations are that a small population of PEC takes up I¹²⁵cBSA quickly, or stores it efficiently, or that the thymus provides macrophages with a favourable environment for retaining antigen.

It is known from studies using S³⁵-BSA that antigen can enter and is retained in the thymus⁵. Macrophages have also been observed in the thymus⁶, where in part they may act as scavangers; but they have also been found in close contact with lymphocytes in mitosis within the thymus of AKR mice⁶. It is concluded from the experiments reported in this communication that efficient presentation of antigen to thymus lymphocytes by other cells may be a part of the normal immune response¹⁶.

Zusammenfassung. Makrophagen aus dem Peritoneum von CBA-Mäusen, die in Zellkultur hitzedenaturiertes Rinder-Serumalbumin phagozytiert haben, transportieren dieses bis zu 4 h nach Transplantation vornehmlich in den Thymus normaler Empfängertiere.

E. Kölsch¹¹

National Institute for Medical Research, Mill Hill, London, N.W.7 (England), 15 March 1968.

- ⁴ P. V. VITTORIO, E. W. WIGHT and B. E. SINNOTT, Can. J. Biochem. Physiol. 40, 1677 (1962).
- ⁵ J. S. GARVEY, D. V. EITZMAN and R. T. SMITH, J. exp. Med. 112, 533 (1960).
- J. N. Blau, Nature 208, 564 (1965).
- ⁷ D. METCALF and M. ISHIDATE, Aust. J. exp. Biol. med. Sci. 40, 57 (1962).
- ⁸ A. S. McFarlane, Nature 182, 53 (1958).
- ⁹ B. Benacerraf, G. Biozzi, B. N. Halpern, C. Stiffel and D. Mouton, Br. J. exp. Path. 38, 35 (1957).
- ¹⁰ I thank Drs. D. W. Dresser and N. A. Mitchison for stimulating criticism. This work was partly supported by a Fellowship of the Royal Society European Programme.
- ¹¹ Present address: Institut für Genetik der Universität, 5 Köln-Lindenthal (Germany).

Transvascular Passage of Albumin-I¹³¹ into Skin of Immunized Mice

It is possible that changes in the connective tissue-interstitial space may affect the manner and the rate of transport of molecules to and from the circulatory system and the cells. It has been proposed that this sequence may play a significant role in aging and that the connective tissue changes may result from genetically programmed chronogenic phenomena and exogenously derived pathogenic alterations. Among the latter are immunologic processes. Antigen-antibody interactions are known to occur in the interstitial space and in basement membranes. These interactions and their sequalae might result in alterations in the diffusibility characteristics of the milieu through which molecules must pass on their way to and from the cells. This study was undertaken in order to test this hypothesis.

Method. Male mice weighing 28 ± 1 g were obtained from a commercial supplier and maintained on Purina pellets. 1 group of animals was injected s.c. with 0.5 ml of a 5% solution of sodium caseinate, 5 times a week for a period of 6 weeks according to the procedure of Christensen and Hjort³. Each animal received a total of 750 mg of sodium caseinate. Another group received a s.c. injection of 0.2 ml streptococcus group A extract (BBL-74027B) in complete Freund's adjuvant and 0.1 ml of the soluble antigen i.p. 4 weeks later.

48 h following the last injection of sodium caseinate, and 2 weeks after the last injection of streptococcal antigen, these animals and their controls were injected in a tail vein with 1 μ c of human albumin-I¹³¹ in a volume of 0.1 ml. In some animals, after 4 min and in others after 2 h, samples of blood were obtained from the internal occular plexus and the mice were killed by cervical fracture. The skin was removed in a uniform manner, dehaired, scraped free of s.c. tissue, dissolved in formic acid, and assayed for bound I¹³¹, as previously described 4. 0.02 ml of serum was used for I¹³¹ assay.

Results and discussion. The results are shown in the Table. As in the previous experiments 4, the 4 min values

were assumed to correspond to the mixing time in the plasma and the radioactivity in the skin was thought to be due to the circulating plasma.

The mean plasma volumes in the skin calculated from 4 min values were 0.0309 ml, 0.0411 ml and 0.0435 ml, respectively, in the control, casein- and strep-antigen treated animals. After 2 h, the serum radioactivity decreased to 64.2%, 77.9% and 91.5%, respectively, of the

Albumin-I131 in serum and skin of immunized mice

	No.	Weight (g)	Serum (cpm 0.02 ml)	Skin (cpm total)		
4 min						
Control	8	39.2	11990 ± 947*	18561 ± 2061		
Casein	8	29.8	10026 ± 793	20623 ± 1037		
Strep-antigen	7	34.3	8537 ± 1039	18589 ± 1872		
2 h						
Control	8	39.5	7695 ± 514	27173 ± 1678		
Casein	8	29.1	7810 + 520	30027 + 1101		
Strep-antigen	7	34.7	7808 ± 320	29023 ± 2451		

[•] Standard error of the mean.

- ¹ H. Sobel, Adv. Geront. Res. 2, 205 (1967).
- F. J. DIXON, in Mechanism of Cell and Tissue Damage Produced by Immune Reactions (Ed. P. Grabar and P. Miescher; Grune and Stratton, Inc., New York 1961), p. 71.
- ³ H. E. CHRISTENSEN and G. H. HJORT, Acta path. microbiol. scand. 47, 140 (1959).
- ⁴ H. Sobel, K. Fard and T. Robuck, Proc. Soc. exp. Biol. Med. 123, 519 (1966).